
Chapter Three
Three Partial Solutions to Hilbert’s Seventh Problem.

We recall from Hilbert’s address that he considered it to be a very difficult
problem to prove that

the expression αβ, for an algebraic base and an irrational algebraic exponent,

e. g., the number 2
√
2 or eπ, always represents a transcendental or at least an

irrational number.

The above quotation is one of the most important comments Hilbert made
while posing his seventh problem. We earlier pointed out the Hilbert’s seventh
problem is usually thought of as being the transcendence of αβ when α 6= 0, 1
and the irrational number β are both algebraic. And the numbers that are most
often used to illustrate this result are those given above by Hilbert; the numbers

2
√
2 and eπ. Yet each of these numbers have additional properties that were

exploited to demonstrate their transcendence several years before the solution
to the more general problem. In this chapter we discuss in some detail the
Russian mathematician A. O. Gelfond’s proof of the transcendence of eπ, and
then briefly consider another Russian mathematician’s, R. O. Kuzmin, proof of

the transcendence of 2
√
2 and the German Karl Boehle’s generalization of these

two results.

The first partial solution to Hilbert’s seventh problem

Theorem (Gelfond, 1929) eπ is transcendental.

Before we look at Gelfond’s proof, which is the most technically challenging
proof we will consider in these notes, we note that, as Gelfond pointed out at
the end of his paper, his method could be modified to establish the following
more general result:

Theorem. If α 6= 0, 1 is algebraic and r is a positive rational number then

α
√
−r is transcendental.

This more general result implies the transcendence of both 2
√
−2 and eπ = i−2i

but not of the other number Hilbert mentioned, 2
√
2.

Gelfond needed a new idea–the Hermite and Lindemann idea of using a
suitable modification of the power series of ez fails when used to study eπ. And
it is easy to see why–any truncation of the power series representation for eπ will
be a polynomial in π. According to Lindemann’s Theorem π is transcendental
so Gelfond could not apply the idea of using this power series to obtain an
algebraic number, and so eventually an integer strictly between 0 and 1.
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Outline of this failed proof. Suppose eπ is algebraic and satisfies an integral,
polynomial equation

r0 + r1e
π + r2e

2π + · · ·+ rde
dπ = 0, rd 6= 0. (1)

For positive integers N ′ > N we separate the power series for eπz into three
pieces:

ezπ =

∞∑
k=0

(zπ)k

k!
=

N∑
k=0

(zπ)k

k!︸ ︷︷ ︸
Main Term, MN (zπ)

+

N ′∑
k=N+1

(zπ)k

k!︸ ︷︷ ︸
Intermediate Term, IN,N′ (zπ)

+

∞∑
k=N ′+1

(zπ)k

k!︸ ︷︷ ︸
Tail, TN′ (zπ)

We use this expression at the values t = 1, . . . , d and the presumed polynomial
relationship which vanishes at eπ, (1) above. Even if we arrange things so that
these Intermediate sums all vanish, upon replacing etπ by the sum MN (tπ) +
TN ′(tπ) in the relationship above we would obtain:

r0MN (0) + r1
(
MN (π) + TN ′(π)

)
+ r2

(
MN (2π) + TN ′(2π)

)
+

· · ·+ rd
(
MN (dπ) + TN ′(dπ)

)
= 0,

Which leads to the equation:

r0MN (0) + r1
(
MN (π)

)
+ r2

(
MN (2π)

)
+ · · ·+ rd

(
MN (dπ)

)
= −

(
r1
(
TN ′(π)

)
+ r2

(
TN ′(2π)

)
+ · · ·+ rd

(
TN ′(dπ)

))
.

This is an equality of two transcendental numbers, because Lindemann had
already demonstrated the transcendence of π. Thus the classical approach of
using an equation as above to produce a nonzero, rational integer less than 1
cannot work.

Gelfond’s proof of the transcendence of eπ.

At the heart of Gelfond’s proof is not the power series representation for e,
or more accurately for the function eπz, but other polynomial approximations
to eπz. These polynomial approximations are based on the Gaussian integers,
so we briefly begin with them.

Key new ingredients in Gelfond’s proof.

1. The collection of Gaussian integers is the set {a + bi : a, b integers}. The
crucial point about the Gaussian integers is that if eπ is assumed to be an
algebraic number then the function f(z) = eπz will take on an algebraic value
at each of the Gaussian integers. Specifically, if a + bi is a Gaussian integer,
then

f(a+ bi) = eπ(a+bi) = eπa × eiπb = (−1)b(eπ)a
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is algebraic. We will discuss the more subtle properties of the Gaussian integers
that Gelfond exploited as we present his proof of the transcendence of eπ, but in
order to even describe how Gelfond used them to give the polynomial approxi-
mations to the function eπz we need to begin with a way to order them. Gelfond
ordered the Gaussian integers by their modulii, and for Gaussian integers with
equal modulli by their arguments. This yields the following ordering:

z0 = 0, z1 = 1, z2 = i, z3 = −1, z4 = −i, z5 = 1 + i,

z6 = −1 + i, z7 = −1− i, z8 = 1− i, . . .

2. It is possible to approximate the function ez by an infinite series each term
of which is a polynomial all of whose zeros are among the (ordered) Gaussian
integers (this leads to the so-called Newton series of the function f(z) = eπz).
Let {z0 = 0, z1, z2, . . .} denote the (ordered) Gaussian integers and consider the
polynomials

P0(z) = 1, P1(z) = z = z − z0, P2(z) = z(z − z1), . . . ,

Pk(z) = z(z − z1) · · · (z − zk−1).

Then we have an interpolation to the function f(z) = eπz by these polynomials:

eπz = A0P0(z) +A1P1(z) +A2P2(z) + . . .+AnPn(z) +Rn(z), (2)

where the numerical coefficients A0, A1, . . . An and the polynomial remainder
term Rn(z) have integral representations. In particular, if γn and γ′n are any
simple, closed curves that enclose the interpolation points z0, z1, . . . , zn then

An =
1

2πi

∫
γn

eπζ

ζ(ζ − z1) . . . (ζ − zn)
dζ

and

Rn(z) =
Pn+1(z)

2πi

∫
γ′n

eπζ

ζ(ζ − z1) . . . (ζ − zn)
dζ.

We will come back to the important point of choosing these contours in the
proof below.

It is perhaps worthwhile to look at the above Newton interpolation to the
function eπz in terms of the ideas of the last chapter.
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t = z0 eπt = A0P0(t)︸ ︷︷ ︸
Main Term

+ A1P1(t) + · · ·ANPN (t)︸ ︷︷ ︸
Vanishing Intermediate Term

+RN (z)︸ ︷︷ ︸
Tail

t = z1 eπt = A0P0(t) +A1P1(t)︸ ︷︷ ︸
Main Term

+ A2P2(t) + · · ·ANPN (t)︸ ︷︷ ︸
Vanishing Intermediate Term

+RN (z)︸ ︷︷ ︸
Tail

...
...

t = zk eπt = A0P0(t) + · · ·AkPk(t)︸ ︷︷ ︸
Main Term

+Ak+1Pk+1(t) + · · ·ANPN (t)︸ ︷︷ ︸
Vanishing Intermediate Term

+RN (z)︸ ︷︷ ︸
Tail

...
...

So if k′ > k then the polynomial approximation to eπzk′ involves a polynomial
of higher degree than the polynomial approximation to eπzk .

Now that we have this representation of the function eπz we can outline Gel-
fond’s proof (we will expand upon and justify each step below):

Outline of Gelfond’s Proof.

Step 1. Assume eπ is algebraic (so the function eπz assumes an algebraic value
at each Gaussian integer).

Step 2. Show that for n sufficiently large An = 0. This means that there exists
a positive integer N∗ so that if n > N∗, An = 0. This tells us that for all n > N∗

we have the representation for the function eπz:

eπz = A0P0(z) +A1P1(z) + · · ·+AN∗PN∗(z) +Rn(z).

Step 3. It follows upon letting γ′n be a circle of radius n and letting n → ∞
that Rn(z) → 0 for all z. Therefore the function eπz may be represented by a
polynomial.

Step 4. Conclude that the function ez is not a transcendental function.

This last conclusion contradicts the transcendence of the function ez and so
shows that our initial assumption, that eπ is algebraic, cannot hold. Thus eπ is
transcendental.

Details of Gelfond’s Proof.

Clearly Step 2 is at the heart of Gelfond’s proof, so we first focus first on
this. His demonstration that An = 0 for all n sufficiently large is ingenious

4



and has two parts. The first part uses analytic tools and it provides an upper
bound for |An| which depends, in part, on choosing a reasonably short contour
of integration γn. The second part is entirely algebraic in nature and involves
taking the norm of an algebraic number. This is the only part of the proof
that uses the assumption that eπ is algebraic. Under this assumption each
of the expressions An is an algebraic number. Using fairly subtle estimates
Gelfond finds a small denominator for An. If An 6= 0 then multiplying An
by a denominator and taking the algebraic norm contradicts the upper bound
obtained in the first part. Thus An = 0.

Step 2. Establishing that for n sufficiently large An = 0.

Part 1. Analytic Part of Proof–An upper bound for |An|
The analytic estimate for |An| follows from the representation

An =
1

2πi

∫
γn

eπζ

ζ(ζ − z1) . . . (ζ − zn)
dζ.

Therefore:

|An| = |
1

2πi

∫
γn

eπζ

ζ(ζ − z1) . . . (ζ − zn)
dζ|

≤ 1

2π
× (length of the contour γn)×max

ζ∈γn

|eπζ |
|ζ||ζ − z1| . . . |ζ − zn|

≤ 1

2π
× (length of the contour γn)× maxζ∈γn |eπζ |

minγ∈γn |ζ||ζ − z1| . . . |ζ − zn|
.

To provide a reasonably small upper bound for |An| Gelfond needed to un-
derstand the possible contours γn that would encircle the Gaussian integers
appearing in the denominator of the integral representation of An. In order to
obtain a small upper bound for |An| Gelfond needed the length of the contour
to be as small as possible, but he also needed each of

max
ζ∈γn
{|eπζ |} and

1

minζ∈γn |ζ||ζ − z1| . . . |ζ − zn|
. (3)

to be small. Clearly any estimate for either of these quantities will depend on
the choice of the contour of integration.

Since the absolute values of the ordered Gaussian integers is nondecreasing,
before specifying γn Gelfond needed to estimate |zn|, and so know how large
of a contour to use, Gelfond referred to some estimates due to E. Landau. If
we temporarily let G(r) denote the number of Gaussian integers xk + yki with
x2k + y2k ≤ r2 then it is not too difficult to derive the estimate Gelfond used
(one simply shows that G(r) is greater than the area of an appropriately chosen
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smaller circle and less than the area of an appropriately chosen larger circle (see
exercises)). The result is that for r >

√
2,

π(r −
√

2)r ≤ G(r) ≤ π(r +
√

2)2.

From this it follows, see exercises, that the nth Gaussian integer, in Gelfond’s
ordering, satisfies:

|zn| =
√
n

π
+ o(
√
n), where lim

n→∞

o(
√
n)√
n

= 0.

The above estimate told Gelfond that he could take the contour of integration
to be the circle of some radius greater than a constant times

√
n
π , Gelfond used

the relatively large radius of n. With this contour it is simple to estimate the
first expression in (3):

max
ζ∈γn
{|eπζ |} ≤ eπmax{Re(ζ):ζ∈γn} = eπn (4)

To estimate the second expression in (3) we need an estimate for the mini-
mum distance from each of the first n Gaussian integers, z1, z2, . . . , zn and the
points of the circle γn, and we want this minimum to not be too small. A
need for such an estimate points to one reason Gelfond took the contour of
integration to have a larger radius than would be needed to simple contain the
first n Gaussian integers. From the estimate for |zn|, above, we see that for n
sufficiently large:

|zn| ≤
√
π

√
n

π
=
√
n,

so for any 1 ≤ i ≤ n,min{|ζ − zi| : ζ ∈ γn} ≥ n −
√
n ≥ 1

2n, for n sufficiently
large. Therefore we have:

max
ζ∈γn

1

|ζ||ζ − z1| . . . |ζ − zn|
=

1

minζ∈γn |ζ||ζ − z1| . . . |ζ − zn|
≤
( 2

n

)n+1

Putting all of the above estimates together we obtain, for n sufficiently large,

|An| = |
1

2πi

∫
γn

eπζ

ζ(ζ − z1) . . . (ζ − zn)
dζ|

≤ 1

2π
× (length of the contour γn)×max

ζ∈γn

|eπζ |
|ζ||ζ − z1| . . . |ζ − zn|

≤ 1

2π
× 2πn× eπn ×

( 2

n

)n+1 ≤ elogn+n−(n+1) log(n/2).

Warning: If we were to further simplify this estimate to something like e−1/2n logn,
for n sufficiently large, Gelfond’s proof will fail.

Part 2. Algebraic Part of Proof–A lower bound for |An| for those n for which
An 6= 0.
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We begin with a simple application of the Residue Theorem that allows us
to express An as an algebraic number:

An =
1

2πi

∫
γn

eπζ

ζ(ζ − z1) . . . (ζ − zn)
dζ

=

n∑
k=0

{
residue of

eπz

z(z − z1) . . . (z − zn)
at z = zk

}
=

n∑
k=0

eπzk∏n
j=0,j 6=k(zk − zj)

.

If for each of the ordered Gaussian integers we use the notation zk = xk +
yki, where xk and yk are ordinary integers which may be positive, negative, or
zero, then

An =

n∑
k=0

eπzk∏n
j=0
j 6=k

(zk − zj)

=

n∑
k=0

eπ(xk+yki)∏n
j=0
j 6=k

(zk − zj)

=

n∑
k=0

(eπ)xk(−1)yk∏n
j=0
j 6=k

(zk − zj)
.

This equation shows that for each n, An is an algebraic number because each
of the summands

(eπ)xk(−1)yk∏n
j=0
j 6=k

(zk − zj)
(5)

is a ratio of algebraic numbers.
Of course the (algebraic) norm of a nonzero algebraic integer is an ordinary

integer that is not equal to zero, but the algebraic norm of an algebraic number
that is not an algebraic integer is simply a rational number. In order to obtain
an integer from An we need to first multiply through by its denominator. The
denominator of each of the summands for the above representation of An is a
product of differences of Gaussian integers. Since Z[i] is a ring, these denom-
inators are themselves Gaussian integers. We need to better understand both
the denominators and numerators in order to find an appropriate integers to
multiply An by in order to obtain an algebraic integer. It is easier to see what
is going on if we simplify our notation. Following Gelfond put

n∏
j=0
j 6=k

(zk − zj) = ωn,j .
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Then

An =
(eπ)x0(−1)y0

ωn,0
+

(eπ)x1(−1)y1

ωn,1
+ · · ·+ (eπ)xn(−1)yn

ωn,n
. (6)

The natural thing to try is to let Ωn equal the product of all of the denom-
inators in(6), so that Ωn ×An is an algebraic integer. From the expression

Ωn =

n∏
j=0

ωn,j =

n∏
k=0

n∏
j=0
j 6=k

(zk − zj),

it is not too difficult to estimate |Ωn|. Since it is a product of n(n− 1) positive
integers each of which is less than 2|zn|, and |zn| =

√
n/π+ o(

√
n), we see that

for n sufficiently large,

|Ωn| ≤
(√
n
)n(n−1)

= e
1
2n(n−1) logn.

We will see below that this estimate is not nearly small enough for Gelfond
to conclude that the upper bound and lower bound for |An| contradict each
other. Gelfond may have tried this but then he settled on a more subtle choice
for Ωn that ultimately does work.

The ring Z[i] is a unique factorization domain, so the notion of the least
common multiple of a collection of Gaussian integers makes sense. In another
paper, also published in 1929, Gelfond studied the distribution of the irreducible
elements in Z[i] and concluded that |Ωn| is not as large as the simplistic estimate
above. Gelfond established the quite precise estimate for

Ωn = L.C.M.
{

(z1 − z2)(z1 − z3) . . . (z1 − zn),

(z2 − z1)(z2 − z3) . . . (z2 − zn), . . . , (zn − z1)(zn − z2) . . . (zn − zn−1)
}
.

of
|Ωn| ≤ e

1
2n logn+163n+O(

√
n).

If we recall that
∏n
j=0,j 6=k(zk − zj) = ωn,j we have a precise representation

for Ωn ×An:

Ωn ×An =
Ωn
ωn,0

(eπ)x0(−1)y0 +
Ωn
ωn,1

(eπ)x1(−1)y1 + · · ·+ Ωn
ωn,n

(eπ)xn(−1)yn .

It is worth making two observations about the above expression:

Observation 1. Each algebraic number
Ωn
ωn,k

is an element of Z[i], so is an

algebraic integer.
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Observation 2. In Gelfond’s ordering for the elements zk = xk + yki, in Z[i],
xk may be positive, negative, or zero. Thus each of the numerators in the above
expression involves can involve either eπ or e−π.

These two observations tell us that Ωn × An is an integral polynomial
expression in eπ, e−π and i. It is possible to simplify things a bit by multi-
plying through by an appropriately high power of eπ. Specifically, if we let
rn = max0≤k≤n{|xk|}, and note for later use that rn ≤

√
n, then (eπ)rnΩnAn

is an integral polynomial expression in eπ and i :

(eπ)rnΩnAn =
Ωn
ωn,0

(eπ)rn+x0(−1)y0+
Ωn
ωn,1

(eπ)rn+x1(−1)y1+· · ·+ Ωn
ωn,n

(eπ)rn+xn(−1)yn .

Finally, if we let δ denote a denominator for eπ, we then have the algebraic
integer:

Pn(i, eπ) = (δ)2
√
n(eπ)rnΩnAn

= (δ)2
√
n−(rn+x0)

Ωn
ωn,0

(δeπ)rn+x0(−1)y0 + (δ)2
√
n−(rn+x1)

Ωn
ωn,1

(δeπ)rn+x1(−1)y1

+ · · ·+ (δ)2
√
n−(rn+xn)

Ωn
ωn,n

(δeπ)rn+xn(−1)yn ,

where Pn(x, y) is the obvious integral polynomial. Our goal is to calculate
the algebraic norm of the algebraic integer Pn(i, eπ), which we will denote by
N(Pn(i, eπ)).

Since Pn(i, eπ) 6= 0 we know that Norm(Pn(i, eπ)) is a nonzero integer. In
order to get a handle on Norm(Pn(i, eπ)) we denote the conjugates of eπ by
θ1(= eπ), θ2, . . . , θd. Then an integral power of Norm(Pn(i, eπ)) is given by the
product:

N = Pn(i, θ1)Pn(−i, θ1)
( d∏
j=2

Pn(i, θj)
)( d∏

j=2

Pn(−i, θj)
)
. (7)

If An 6= 0 then N 6= 0.
We will use our earlier analytic work to provide an upper bound for the

first factor, |Pn(i, θ1)|, and algebraic information about the Gaussian integers
to estimate the absolute values of each of the other factors.

Our earlier analytic estimate for |An|, combined with Gelfond’s estimate for
|Ωn| and the estimates rn ≤

√
n and |xn| ≤

√
n yields:

|P (i, θ1)| ≤ e− 1
2n logn+170n, provided n is sufficiently large. (8)

Each of the other 2d−1 factors in (7) is estimated by the triangle inequality.

The most difficult terms to estimate are the ratios
Ωn
ωn,k

. We have already

seen that in a different paper Gelfond provided an estimate for the numerator
|Ωn|. To provide a lower bound on the denominator, Gelfond uses an estimate
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from another mathematician, Seigo Fukasawa, who, in 1926, showed that for n
sufficiently large,

|ωn,k| > e
1
2n logn−10n.

Therefore, provided n is sufficiently large, we have

| Ωn
ωn,k
| ≤ e 1

2n logn+164n−( 1
2n logn−10n) ≤ e174n.

Putting all of these estimates together we see that each of the other factors
in (7) we have:

|Pn(±i, θj)| ≤ (n+ 1)e174n(δeπ)2
√
n ≤ e175n, for n sufficiently large.

Finally, we have for the nonzero integer N ,

0 < |N | ≤ e− 1
2n logn+(2d−1)175n. (9)

The only way to avoid the contradiction presented by the above inequalities
is to conclude that our assumption that An 6= 0 must be wrong. This leads us
to the conclusion that for n sufficiently large, say n > N∗, An = 0. This tells us
that for all n > N∗ we have the representation for the function eπz:

eπz = A0P0(z) +A1P1(z) + · · ·+AN∗PN∗(z) +Rn(z).

We take the contour of integration in the integral representation for Rn(z) to
be a circle with radius n. Since for any z,Rn(z)→ 0 as n→∞ it follows that
eπz equals the polynomial A0P0(z) +A1P1(z) + · · ·+AN∗PN∗(z) and so is not
a transcendental function. It follows that ez is not a transcendental function,
which is our long sought contradiction.

Two other partial solutions

The title of this chapter is ”Three partial solutions to Hilbert’s seventh
problem”, of which Gelfond’s was the first. One year later R.O. Kuzmin gave
his partial solution to Hilbert’s problem. His paper began:

In December’s installment of the journal Comptes Rendus de l’Academie des
Sciences de Paris there was an interesting article by A. Gelfond, in which the
author obtained a new result in the theory of transcendental numbers with the
help of extremely clever reasoning. ... The method, which I use here, is closely
based on the method of A.O. Gelfond (which I do not know very well, as he
published only in Japanese journals, which are inaccessible to me). Perhaps for
this reason my methodology is simpler and more elementary. In particular I
proceed without complex functional analysis.

Theorem (Kuzmin 1930) 2
√
2 is transcendental.

We mentioned that Gelfond’s approach could be used to establish somewhat
more, Kuzmin’s actually established the more general result that his method
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could establish: For any positive rational number r that is not a perfect square
and for any algebraic number α 6= 0, 1, α

√
r is transcendental. For simplicity

we only look at his proof of the transcendence of 2
√
2.

Both the gross structure, and the nature of the details, in Kuzmin’s proof
are strikingly similar to Gelfond’s proof. In broad outline Kuzmin starts with

the assumption that 2
√
2 is algebraic and studies this value by considering the

real-valued function 2z = elog(2)x. He then approximates 2z using the Lagrange
interpolation formula (not using the Gaussian integers but the numbers {a +
b
√

2 : a, b integers, not both zero}, which he orders as z1, z2, . . . . Then, using
the notation Pk(z) = (z − z1)(z − z2) . . . (z − zk), Kuzmin had that for each n,

2z =

n∑
k=1

Pn(z)

z − zk
2zk

P ′n(zk)
+
Pn(z)

n!
2ζ(log 2)n,

where ζ lies between the smallest and the largest of z1 through zn.
But P ′n(z) =

∑n
r=1

∏
` 6=r(z−z`) which implies that P ′n(zk) =

∏
` 6=k(zk−z`).

Therefore, for z0 /∈ {z1, . . . , zn}

2z0 =

n∑
k=1

Pn(z0)2zk

(z0 − zk)
∏
` 6=k(zk − z`)

+
Pn(z0)

n!
2ζ(log 2)n.

Dividing through by Pn(z0), and rewriting:

n∑
k=0

2zk∏
` 6=k(zk − z`)

=
2ζ(log 2)n

n!
.

1. Multiplying the left-hand side of this equality by the least common multiple
of the denominators and then multiplying by an algebraic denominator yields a
nonzero algebraic integer.

2. Taking n sufficiently large the right hand side quantity has a small absolute
value.
3. Taking the algebraic norm of the left-hand side produces a nonzero integer
whose absolute value is less than 1.

These two estimates contradict, so the error term in Lagrange Interpolation
equals 0. It follows that the transcendental functionf(z) = 2z is a polynomial
function. This contradiction establishes the result.

A couple of years later a German mathematician, Karl Boehle, published a
paper that generalized the results of both Gelfond and Kuzmin, yet still fell far
short of solving Hilbert’s seventh problem. In his paper Boehle acknowledged
that his work built on Gelfond and Kuzmin’s:
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In 1929 A. Gelfond demonstrated the transcendence of the number αβ when α is
an irrational, neither 0 nor 1, algebraic number and β is a quadratic irrational-
ity. C.L.Siegel showed in a Number Theory Seminar in February 1930 that αβ

is transcendental when β is a real quadratic irrationality. R.A. Kuzmin proved
this also (Bulletin de l’Academie des Sciences URS, Leningrad 1930, No. 6).

Theorem (Boehle 1932) Suppose α 6= 0, 1 and β are algebraic numbers,
d = deg(β) ≥ 2. Then at least one of the numbers

αβ , . . . , αβ
d−1

is transcendental.

Proof (Main Idea). Assume all of the numbers α, αβ , . . . , αβ
d−1

are algebraic.
Boehle examined the function f(z) = αz at points n1 + n2β + · · ·+ ndβ

d−1

Note that for d = 2, so for example if β =
√
n is irrational then Boehle re-

established the transcendence of α
√
n.

Gelfond’s theorem follows from Boehle’s upon taking β =
√
−r, where r is a

positive, rational numbers. Boehle’s theorem then implies that one of the two
numbers

α
√
−r or α(

√
−r)2 = α−r,

must be transcendental. Since the second of these numbers is algebraic the first
of them, the one Geldfond addressed, must be the transcendental one.

The deduction of Kuzmin’s result from Boehle’s is the similar, with
√
r

replacing
√
−r.

Exercises

1. Show that ez is a transcendental function.

2. Let a and b be complex numbers. Show that the functions eaz and ebz

are algebraically independent if and only if a/b is irrational. (We will use this
result in the next chapter.)

3. Convince yourself that the estimate for G(r) given above is correct. (Hint:
Let n = G(r). Let zk be one of the first n Gaussian integers and associate with
zk the unit square whose vertices are Gaussian integers and whose lower left
corner is the Gaussian integer zk. We want to take a smaller circle, of radius
r′ < r, so that its area is less than n. It suffices to let r′ = r −

√
2. Similarly

we want to take a larger radius, r′′ > r, so than the radius of this larger circle
exceeds n. This time it suffices to take r′′ = r +

√
2. It follows that

π(r −
√

2)2 < G(r) < π(r +
√

2)2.)
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4. Conclude from the estimate in problem 3 (above) that if zn denotes the
nth Gaussian integer in Gelfond’s ordering then

|zn| =
√
n

π
+ o(
√
n).

(Hint: If G(r) = n let r = |zn|. Then we have n = π|zn|2 +O(|zn|). Therefore

n = π|zn|2 +O(|zn|),

which leads to∣∣n
π
− |zn|2

∣∣ =
∣∣√n

π
− |zn|

∣∣∣∣√n

π
+ |zn|

∣∣ = O(|zn|).)

5. Verify the equality in the displayed line (4).

6. Derive the naive estimate for |Ωn|.

7. Explain why we wrote the N is an integral power of the norm of Pn(i.eπ).

8. Convince yourself the N , on page 8, is a nonzero integer.

9. Give an restructured outline of Gelfond’s proof so that the proof concludes
with a contradiction

0 < rational integer < 1.
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